A dynamic scaffold of pre-snoRNP factors facilitates human box C/D snoRNP assembly.
نویسندگان
چکیده
The box C/D small nucleolar RNPs (snoRNPs) are essential for the processing and modification of rRNA. The core box C/D proteins are restructured during human U3 box C/D snoRNP biogenesis; however, the molecular basis of this is unclear. Here we show that the U8 snoRNP is also restructured, suggesting that this may occur with all box C/D snoRNPs. We have characterized four novel human biogenesis factors (BCD1, NOP17, NUFIP, and TAF9) which, along with the ATPases TIP48 and TIP49, are likely to be involved in the formation of the pre-snoRNP. We have analyzed the in vitro protein-protein interactions between the assembly factors and core box C/D proteins. Surprisingly, this revealed few interactions between the individual core box C/D proteins. However, the novel biogenesis factors and TIP48 and TIP49 interacted with one or more of the core box C/D proteins, implying that they mediate the assembly of the pre-snoRNP. Consistent with this, we show that NUFIP bridges interactions between the core box C/D proteins in a partially reconstituted pre-snoRNP. Restructuring of the core complex probably reflects the conversion of the pre-snoRNP, where core protein-protein interactions are maintained by the bridging biogenesis factors, to the mature snoRNP.
منابع مشابه
Assembly and maturation of the U3 snoRNP in the nucleoplasm in a large dynamic multiprotein complex.
The assembly and maturation of box C/D snoRNPs, factors essential for ribosome biogenesis, occur in the nucleoplasm. To investigate this process, we have analyzed non-snoRNP factors associated with the nucleoplasmic human U3 snoRNA. We show that both the precursor and mature length nucleoplasmic U3 snoRNAs are present in larger multiprotein complexes that contain the core box C/D proteins as we...
متن کاملA spliceosomal intron binding protein, IBP160, links position-dependent assembly of intron-encoded box C/D snoRNP to pre-mRNA splicing.
Pre-mRNA splicing in vertebrates is molecularly linked to other processes. We previously reported that splicing is required for efficient assembly of intron-encoded box C/D small nucleolar ribonucleoprotein (snoRNP). In the spliceosomal C1 complex, snoRNP proteins efficiently assemble onto snoRNA sequences if they are located about 50 nt upstream of the intron branchpoint. Here, we identify the...
متن کاملThe role of Hsp90-R2TP complex in snoRNP assembly and ribosomal RNA processing
In a global screen for interactors of the Hsp90 molecular chaperone, we identified a novel complex that we termed the R2TP complex interacting with the chaperone. The complex consists of four proteins: Rvb1, Rvb2, Tah1, and Pih1. Rvb1 and Rvb2 are AAA+ helicases, while Tah1 and Pih1 are novel Hsp90 cofactors/interactors. We subsequently demonstrated that the Hsp90-R2TP complex is involved in bo...
متن کاملImplication of the box C/D snoRNP assembly factor Rsa1p in U3 snoRNP assembly
The U3 box C/D snoRNA is one key element of 90S pre-ribosome. It contains a 5΄ domain pairing with pre-rRNA and the U3B/C and U3C΄/D motifs for U3 packaging into a unique small nucleolar ribonucleoprotein particle (snoRNP). The RNA-binding protein Snu13/SNU13 nucleates on U3B/C the assembly of box C/D proteins Nop1p/FBL and Nop56p/NOP56, and the U3-specific protein Rrp9p/U3-55K. Snu13p/SNU13 ha...
متن کاملCharacterization of the interaction between protein Snu13p/15.5K and the Rsa1p/NUFIP factor and demonstration of its functional importance for snoRNP assembly
The yeast Snu13p protein and its 15.5K human homolog both bind U4 snRNA and box C/D snoRNAs. They also bind the Rsa1p/NUFIP assembly factor, proposed to scaffold immature snoRNPs and to recruit the Hsp90-R2TP chaperone complex. However, the nature of the Snu13p/15.5K-Rsa1p/NUFIP interaction and its exact role in snoRNP assembly remained to be elucidated. By using biophysical, molecular and imag...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular biology
دوره 27 19 شماره
صفحات -
تاریخ انتشار 2007